

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, District Shenzhen, China 518057

 Telephone:
 +86 (0) 755 2601 2053

 Fax:
 +86 (0) 755 2671 0594

 Email:
 sgs_internet_operations@sgs.com

Report No.: SZEMO081005325TXE Page: 1 of 28

TEST REPORT

Test Result :	PASS*					
Date of Issue:	11 November 2008					
Date of Test:	05 November 2008					
Date of Receipt:	29 October 2008					
	EN 61000-6-3 : 2007 & EN 61000-6-1 : 2007.					
Standards:	2006/28/EC as last amended to directive 72/245/EEC;					
Item No.:	NPA-DC1					
EUT Name:	Notebook Universal Adapter					
Equipment Under Test (EU	IT):					
	Dalang Street, Longhua,Bao An, Shenzhen					
Address of Applicant::	2F, B Building, Shifeng Science and Technology Park, Huaning Road, Xinwei Village					
Applicant/Manufacturer/ Factory:	Gembird Electronics Ltd					
Application No.:	SZEMO081005325TX					

* In the configuration tested, the EUT complied with the standards specified above.

The CE mark as shown below can be used, under the responsibility of the manufacturer, after completion of an EC Declaration of Conformity and compliance with 2004/108/EC Directives.

Ce

Robinson Lo Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or an y agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SZEMO081005325TXE Page: 2 of 28

2 Test Summary

For emark directive:									
Test	Test Requirement	Test Method	Class / Severity	Result					
Radiated Emissions 30MHz to 1GMHz	2006/28/EC	2004/104/EC Clause 6.5 and 6.6	6.5.2.1 for broad band emissions6.6.2.1 for narrow band emissions	PASS					
Transient Conducted Emission	2006/28/EC	2004/104/EC & ISO 7637-2:DIS2002	N/A	N/A					
Transient Conducted Immunity	2006/28/EC	2004/104/EC & ISO 7637-2:DIS2002	6.8 of 2004/104/EC Table 1	PASS					
Radiated RF immunity	2006/28/EC	2004/104/EC ISO 11452	N/A	N/A					
For EMC directive:									
Test	Test Requirement	Test Method	Class / Severity	Result					
Radiated Emission (30MHz to 1GHz) §	EN 61000-6-3: 2007	CISPR 16-2-3	Table 1 Column 3 of EN61000-6-3	PASS					
ESD	EN 61000-6-1: 2007	EN 61000-4-2 :1995 + A1: 1998+A2:2001	±2, 4 kV Contact ±2, 4, 8 kV Air	PASS					
Radiated Immunity, 80MHz to 1GHz	EN 61000-6-1:2007	EN 61000-4-3-2006	3V/m, 80%, 1kHz Amp. Mod.	PASS					
Radiated Immunity, 1.4GHz to 2GHz	EN 61000-6-1:2007	EN 61000-4-3:2006	3V/m, 80%, 1kHz Amp. Mod.	PASS					
Radiated Immunity, 2GHz to 2.7GHz	EN 61000-6-1:2007	EN 61000-4-3:2006	1V/m, 80%, 1kHz Amp. Mod.	PASS					

Report No.: SZEMO081005325TXE Page: 3 of 28

Remark:

1. N/A: not applicable. Please refer to Section 6.2 and 6.3 of this report for further details.

2.As the clause 3.9 of 2004/104/EC:" Components sold as aftermarket equipment and intended for the installation in motor vehicles need no type approval if they are not related to immunity-related functions (Annex I, 2.1.12). In this case a Declaration of Conformity according to the procedures of Directive 89/336/EEC must be issued. Part of this declaration must be that the ESA fulfils the limits defined in paragraphs 6.5, 6.6, 6.8, 6.9 and 8.5 of Annex I of this Directive (2004/104/EC)".

If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz. (Refer to CISPR22:2006 clause 6.2 Conditional testing procedure)

The report SZEMO081005325TX was an additional report copied from the report SZEMO081005324TX, just changing the Applicant Name and Address, EUT Name and Item No. Since the electrical circuit design, layout, components used and internal wiring for the Item "NPA-DC1" in the report SZEMO081005325TX was exactly the same as the Item "ZYT-DD80-100" in the report SZEMO081005324TX.

Report No.: SZEMO081005325TXE Page: 4 of 28

3 Contents

		Page
1	1 COVER PAGE	1
r		2
2		
3	3 CONTENTS	4
4	4 GENERAL INFORMATION	
	4.1 DETAILS OF E.U.T.	5
	4.2 DESCRIPTION OF SUPPORT UNITS	
	4.3 STANDARDS APPLICABLE FOR TESTING	5
	4.4 Test Location	5
	4.5 TEST FACILITY	6
	4.6 DEVIATION FROM STANDARDS	
	4.7 ABNORMALITIES FROM STANDARD CONDITIONS	6
5	5 APPENDIX A: INSTRUMENTS USED DURING TEST	7
6	6 TEST RESULTS	9
	6.1 RADIATED EMISSIONS 30MHZ TO 1GHZ	0
	6.1.1 FUT Operation	9
	6.1.2 Test Setup	
	6.1.3 Measurement Data	
	6.2 TRANSIENT CONDUCTED EMISSIONS TEST	14
	6.3 IMMUNITY TEST	
	6.3.1 Transient ImmunityTest	
	6.3.2 Radiated immunity lest	
7	7 TEST RESULTS (EMC DIRECTIVE)	
	7.1 RADIATED EMISSIONS, 30MHz TO 1GHz	19
	7.2 ESD	
	7.2.1 E.U.T. Operation	
	7.2.2 Test Results	
	7.3 1 FIIT Operation	
	7.3.2 Test Results:	
8	3 PHOTOGRAPHS	24
	8.1 RADIATED EMISSION TEST SETUP	
	8.2 ESD TEST SETUP	
	8.3 RADIATED IMMUNITY TEST SETUP	
	8.4 TRANSIENT IMMUNITY TEST	
	8.5 EUT CONSTRUCTIONAL DETAILS	

Report No.: SZEMO081005325TXE Page: 5 of 28

4 General Information

4.1 Details of E.U.T.

Power Supply:

DC input: 12-16V 10A

DC output: 15/16/18/19/20V 4A 22/24V 3.4A

4.2 Description of Support Units

N/A

4.3 Standards Applicable for Testing

The customer requested EMC test for Notebook Universal Adapter.

4.4 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

Report No.: SZEMO081005325TXE Page: 6 of 28

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

VCCI

The 3m Semi-anechoic chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2197 and C-2383 respectively. Date of Registration: September 29, 2008. Valid until September 28, 2011.

• FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 556682, June 27, 2008.

Industry Canada (IC)

The 3m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1.

4.6 Deviation from Standards

None.

4.7 Abnormalities from Standard Conditions

None.

Report No.: SZEMO081005325TXE Page: 7 of 28

	RE in Chamber								
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (dd-mm-yy)	Cal.Due date (dd-mm-yy)			
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	16-06-2007	15-06-2009			
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEL0023	12-12-2007	11-12-2008			
3	EMI Test software	AUDIX	E3	SEL0050	N/A	N/A			
4	Coaxial cable	SGS	N/A	SEL0028	18-06-2008	17-06-2009			
5	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0014	12-08-2008	11-08-2009			
6	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	18-06-2008	17-06-2009			
7	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0005	12-08-2008	11-08-2009			
8	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	12-08-2008	11-08-2009			
9	Pre-amplifier (1-18GHz)	Rohde & Schwarz	AFS42-00101 800-25-S-42	SEL0081	18-06-2008	17-06-2009			
10	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	SEL0080	18-06-2008	17-06-2009			
11	Band filter	Amindeon	82346	SEL0094	18-06-2008	17-06-2009			
12	Active Loop Antenna	Beijing Daze	ZN30900A	SEL0097	15-06-2008	14-06-2009			

5 Appendix A: Instruments Used during Test

Report No.: SZEMO081005325TXE Page: 8 of 28

	Radiated Immunity									
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (dd-mm-yy)	Cal.Due date (dd-mm-yy)				
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	16-06-2007	15-06-2009				
2	Signal Generator	Rohde & Schwarz	SML03	SEL0068	18-06-2008	17-06-2009				
3	RF Amplifier 30M-1GHz	Amplifier Research	250W1000A	SEL0066	12-12-2007	11-12-2008				
4	RF Amplifier 0.8-3.0GHz	Amplifier Research	60S1G3	SEL0065	12-12-2007	11-12-2008				
5	Power Meter	Rohde & Schwarz	NRVD	SEL0069	18-06-2008	17-06-2009				
6	Power Sensor	Rohde & Schwarz	URV5-Z2	SEL0071	18-06-2008	17-06-2009				
7	Power Sensor	Rohde & Schwarz	URV5-Z2	SEL0072	18-06-2008	17-06-2009				
8	Software EMC32	Rohde & Schwarz	EMC32-S	SEL0082	N/A	N/A				
9	Log-periodic Antenna	Amplifier Research	AT1080	SEL0073	N/A	N/A				
10	Antenna Tripod	Amplifier Research	TP1000A	SEL0074	N/A	N/A				
11	High Gain Horn Antenna (0.8-5GHz)	Amplifier Research	AT4002A	SEL0075	N/A	N/A				

ESD								
Itom	Test Equipment	Manufacturer	Model No	Inventory	Cal.Date	Cal.Due date		
litem	rest Equipment	Manufacturer	woder wo.	No.	(dd-mm-yy)	(dd-mm-yy)		
1	ESD Simulator	Thermo	MZ-15/EC	SEL0012	03-04-2008	02-04-2009		
2	ESD Ground Plane	SGS(3m*3m)	N/A	SEL0004	N/A	N/A		

General used equipment									
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (dd-mm-yy)	Cal.Due date (dd-mm-yy)			
1	Humidity/ Temperature Indicator	Shanghai	ZJ1-2B	SEL0101 to SEL0103	18-11-2007	17-11-2008			
2	Barometer	ChangChun	DYM3	SEL0088	11-07-2008	10-07-2010			

SGS-CSTC Standards Technical Services Co., Ltd.

Report No.: SZEMO081005325TXE Page: 9 of 28

Test Results 6

6.1 Radiated Emissions, 30MHz to 1GHz

Test Requirement:	2006/28/EC
Test Method:	CISPR 25
Frequency Range:	30MHz to 1GHz
Measurement Distance:	1 meter
Limit:	Annex I 6.5.2 of 2004/104/EC (for broadband emissions)
	Annex I 6.6.2 of 2004/104/EC (for narrowband emissions)
Detector:	Peak for pre-scan (120kHz resolution bandwidth)
	Quasi-Peak for broad band emissions (120KHz)
	Average for narrow band emissions (120KHz)

6.1.1 E.U.T. Operation

Operating Environment:

Temperature:	22.0°C	Humidity:	53 % RH	Atmospheric Pressure:	1010	mbar
EUT Operation:	Test in on	mode. keep EU	T working with	n full load		

6.1.2 Test Setup

The EUT was insulated placed 50mm above the ground plane, the ground plan was in a height of 1m to the reference plane of semi-anechoic chamber and with electrical connection. No additional electric connection was made between the EUT and ground plane as the EUT will not be intended to be bonded to the bodywork of the vehicle. The EUT was powered by 12V vehicle battery through 5uH/50ohm LISN.

Report No.: SZEMO081005325TXE 10 of 28 Page:

6.1.3 Measurement Data

Condition
EUT
Job No.

: EMARK SUB BROAD 3m 0042673 VERTICAL : Universal DC Adapter : 5324TX

Mode

1								
	Cable	Antenna	Preamp	Read		Limit	Over	
Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	$\overline{\text{dBuV/m}}$	dB	
87.230	1.10	8.45	27.96	39.50	21.08	52.99	-31.91	Peak
87.230	1.10	8.45	27.96	35.54	17.13	52.99	-35.86	QP
98.870	1.19	9.06	27.89	39.87	22.23	53.82	-31.58	Peak
98.870	1.19	9.06	27.89	22.90	5.26	53.82	-48.55	QP
121.180	1.26	7.87	27.67	36.61	18.06	55.15	-37.09	Peak
121.180	1.26	7.87	27.67	23.96	5.41	55.15	-49.74	QP
210.420	1.46	10.73	27.10	36.38	21.48	58.78	-37.30	Peak
210.420	1.46	10.73	27.10	33.10	18.20	58.78	-40.58	QP
382.110	2.15	16.08	27.30	22.74	13.68	62.70	-49.02	QP
382.110	2.15	16.08	27.30	37.38	28.31	62.70	-34.38	Peak
502.390	2.60	17.85	27.71	22.40	15.15	63.00	-47.85	QP
502.390	2.60	17.85	27.71	36.99	29.74	63.00	-33.26	Peak
	Freq MHz 87.230 98.870 98.870 121.180 121.180 210.420 210.420 382.110 382.110 502.390 502.390	Cable: Freq Loss MHz dB 87.230 1.10 87.230 1.10 98.870 1.19 98.870 1.19 98.870 1.19 121.180 1.26 121.180 1.26 210.420 1.46 210.420 1.46 382.110 2.15 382.110 2.15 502.390 2.60 502.390 2.60	CableAntenna Freq Loss Factor MHz dB dB/m 87.230 1.10 8.45 87.230 1.10 8.45 98.870 1.19 9.06 98.870 1.19 9.06 121.180 1.26 7.87 121.180 1.26 7.87 210.420 1.46 10.73 210.420 1.46 10.73 382.110 2.15 16.08 382.110 2.15 16.08 502.390 2.60 17.85 502.390 2.60 17.85	CableAntenna Preamp Freq Loss Factor MHz dB dB/m dB 87.230 1.10 8.45 27.96 87.230 1.10 8.45 27.96 98.870 1.19 9.06 27.89 98.870 1.19 9.06 27.89 121.180 1.26 7.87 27.67 121.180 1.26 7.87 27.767 121.420 1.46 10.73 27.10 210.420 1.46 10.73 27.10 382.110 2.15 16.08 27.30 382.110 2.15 16.08 27.30 502.390 2.60 17.85 27.71	CableAntenna Preamp Read Freq Loss Factor Factor Level MHz dB dB/m dB dBuV 87.230 1.10 8.45 27.96 39.50 87.230 1.10 8.45 27.96 35.54 98.870 1.19 9.06 27.89 39.87 98.870 1.19 9.06 27.89 22.90 121.180 1.26 7.87 27.67 36.61 121.180 1.26 7.87 27.67 36.61 121.180 1.26 7.87 27.67 33.60 210.420 1.46 10.73 27.10 36.38 210.420 1.46 10.73 27.10 33.10 382.110 2.15 16.08 27.30 37.38 502.390 2.60 17.85 27.71 22.40 502.390 2.60 17.85 27.71 36.99	CableAntenna Preamp Read Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 87.230 1.10 8.45 27.96 39.50 21.08 87.230 1.10 8.45 27.96 35.54 17.13 98.870 1.19 9.06 27.89 39.87 22.23 98.870 1.19 9.06 27.89 29.00 5.26 121.180 1.26 7.87 27.67 36.61 18.06 121.180 1.26 7.87 27.67 36.38 21.48 210.420 1.46 10.73 27.10 36.38 21.48 210.420 1.46 10.73 27.10 33.10 18.20 382.110 2.15 16.08 27.30 37.38 28.31 502.390 2.60 17.85 27.71 22.40 15.15 502.390 2.60 17.85 27.71 36.99	CableAntenna Preamp Read Limit Freq Loss Factor Factor Level Level Line MHz dB dB/m dB dBuV dBuV/m dBuV/m 87.230 1.10 8.45 27.96 39.50 21.08 52.99 87.230 1.10 8.45 27.96 35.54 17.13 52.99 87.230 1.10 8.45 27.96 35.54 17.13 52.99 98.870 1.19 9.06 27.89 39.87 22.23 53.82 98.870 1.19 9.06 27.89 22.90 5.26 53.82 121.180 1.26 7.87 27.67 36.61 18.06 55.15 121.180 1.26 7.87 27.67 23.96 5.41 55.15 210.420 1.46 10.73 27.10 36.38 21.48 58.78 382.110 2.15 16.08 27.30 37.38 28.3	CableAntenna Preamp Read Limit Over Freq Loss Factor Factor Level Level Line Limit MHz dB dB/m dB dBuV dBuV/m dBuV/m dB 87.230 1.10 8.45 27.96 39.50 21.08 52.99 -31.91 87.230 1.10 8.45 27.96 39.50 21.08 52.99 -31.91 87.230 1.10 8.45 27.96 35.54 17.13 52.99 -35.86 98.870 1.19 9.06 27.89 39.87 22.23 53.82 -48.55 121.180 1.26 7.87 27.67 36.61 18.06 55.15 -37.09 121.180 1.26 7.87 27.67 23.96 5.41 55.15 -49.74 210.420 1.46 10.73 27.10 36.38 21.48 58.78 -37.30 210.420 1.46 10.73

EUT

Mode

SGS-CSTC Standards Technical Services Co., Ltd.

Report No.: SZEMO081005325TXE Page: 11 of 28

	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
10	98.870	1.19	9.06	27.89	32.68	15.04	43.82	-28.77	Average
2	122.150	1.26	7.85	27.67	30.96	12.41	45.21	-32.80	Average
3	206.540	1.44	10.52	27.12	29.23	14.07	48.66	-34.58	Average
4	382.110	2.15	16.08	27.30	30.90	21.83	52.70	-30.86	Average
5	509.180	2.61	18.07	27.70	30.61	23.59	53.00	-29.41	Average
6	684.750	2.87	21.48	27.33	26.97	23.99	53.00	-29.01	Average

Report No.: SZEMO081005325TXE Page: 12 of 28

	riequency (i
Condition	: EMARK SUB BROAD 3m 0042673 HORIZONTAL
EUT	: Universal DC Adapter
Job No.	: 5324TX
Mode	: On

	Freq	Cable Loss	Antenna Factor	Preamp Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	52.310	0.80	8.18	28.09	40.44	21.33	55.93	-34.60	Peak
2	52.310	0.80	8.18	28.09	36.98	17.87	55.93	-38.06	QP
3	87.230	1.10	8.45	27.96	37.28	18.87	52.99	-34.12	Peak
4	87.230	1.10	8.45	27.96	25.04	6.63	52.99	-46.36	QP
5	149.310	1.32	8.91	27.46	42.85	25.62	56.52	-30.91	Peak
6	149.310	1.32	8.91	27.46	23.95	6.71	56.52	-49.81	QP
7	222.060	1.53	11.34	27.04	24.40	10.23	59.13	-48.91	QP
8	222.060	1.53	11.34	27.04	40.80	26.62	59.13	-32.51	Peak
9	288.990	1.85	13.40	26.76	24.01	12.50	60.86	-48.36	QP
10	288.990	1.85	13.40	26.76	36.24	24.73	60.86	-36.13	Peak
11	497.540	2.59	17.80	27.70	37.10	29.79	63.00	-33.21	Peak
12	497.540	2.59	17.80	27.70	23.10	15.79	63.00	-47.21	QP

This document is issued by the Company under its General Conditions of Service printed overleaf or available on request and accessible at<u>http://www.sgs.com/terms and conditions.htm.</u> Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law." Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This document cannot be reproduced exept in full, without prior approval of the Company.

Horizontal:

Report No.: SZEMO081005325TXE Page: 13 of 28

Condition	EMARK SUB NARROW 3m 0042673 HOR
EUT	: Universal DC Adapter
Job No.	: 5324TX
Mode	: On
	CableInterna Dre

		_	Cable	Antenna	Preamp	Read	- 1	Limit	Over	- 1
		Fred	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		52.310	0.80	8.18	28.09	32.82	13.71	45.93	-32.22	Average
2		90.140	1.10	8.71	27.95	32.50	14.37	43.21	-28.84	Average
3	0	148.340	1.31	8.86	27.47	37.05	19.76	46.48	-26.72	Average
4		220.120	1.52	11.26	27.05	33.46	19.18	49.07	-29.89	Average
5		288.990	1.85	13.40	26.76	25.93	14.42	50.86	-36.44	Average
6		498.510	2.59	17.80	27.70	30.03	22.72	53.00	-30.28	Average

Report No.: SZEMO081005325TXE Page: 14 of 28

6.2 Transient Conducted Emissions Test

There is no need for Transient conducted emission test to be performed on this product in accordance with 8.5 of Annex I of this Directive (2004/104/EC).

ESAs that are not switched, contain no switches or do not include inductive loads need not be tested for conducted emission and shall be deemed to comply with paragraph 6.9 of this Annex.

6.3 Immunity Test

6.3.1 Transient ImmunityTest

Test Requirement:	Clause 6.8 of 2004/104/EC
Test Method:	2004/104/EC & ISO 7637-2
Test requirement	Table 1 of 2004/104/EC
Test mode:	Test the EUT in charging mode with full load and half load.

Table 1: Immunity of ESA

		Functional status for systems		
Test pulse number	Immunity test level	Related to immunity- related functions	Not related to immunity- related functions	
1	Ш	С	D	
2a	Ш	В	D	
2b	Ш	С	D	
3a/3b	Ш	А	D	
4	Ш	B (for ESA which must be operational during engine start phases) C (for other ESAs)	D	

Report No.: SZEMO081005325TXE Page: 15 of 28

Table 3 — Parameters for test pulse 1					
Parameter	12 V system	24 V system			
U_{s}	-75 V to - 100 V	-450 V to -600 V			
R _i	10 Ω	50 Ω			
ťd	2 ms	1 ms			
t _r	1_05 µs	3 _1,5 μs			
t ₁ a	0,5 s to 5 s				
<i>t</i> ₂	200 ms				
t3 ^b	< 100 µs				

 $a = t_1$ shall be chosen such that the DUT is correctly initialized before the application of the next pulse.

 $^{\rm b}$ $~\tau_{3}$ is the smallest possible time necessary between the disconnection of the supply source and the application of the pulse.

Figure 6 — Test pulse 2a

Table 4 — Parameters for test pulse 2a

Parameter	12 V system	24 V system				
$U_{\rm s}$	+ 37 V to + 50 V					
R _i	2 Ω					
^t d	0,05 ms					
t _r	$\left(10 \begin{array}{c} 0 \\ -0,5 \end{array}\right) \ \mu s$					
t1 ^a	0,2 s to 5 s					
^a The repetition time t_1 can be short, depending on the switching. The use of a short repetition time reduces the test time.						

Report No.: SZEMO081005325TXE Page: 16 of 28

Figure 7 — Test pulse 2b

Table 6 — Parameters for test pulse 3a

Parameter	12 V system	24 V system				
$U_{\rm S}$	– 112 V to – 150 V	- 150 V to - 200 V				
R _i	50	Ω				
ťd	(0,1 ^{+0,1} ₀) μs					
t _r	5 ns ± 1,5 ns					
t _i	100 µs					
t4	10 ms					
t5	90 ms					

Parameter	12 V system	24 V system			
$U_{\mathbf{s}}$	10 V	20 V			
R _i	0 Ω to	0,05 Ω			
t _d	0,2 s to 2 s				
t ₁₂	$1\ ms\pm0,5\ ms$				
t _r	$1\ ms\pm0,5\ ms$				
<i>t</i> 6	$1\ \text{ms}\pm0,5\ \text{ms}$				

Report No.: SZEMO081005325TXE Page: 17 of 28

Figure 10 — Test pulse 4

Parameter	12 V system	24 V system					
Us	– 6 V to – 7 V	- 12 V to - 16 V					
U_{a}	– 2,5 V to – 6 V with $ U_{a} \leq U_{s} $	– 5 V to – 12 V with $ U_{a} \leq U_{s} $					
R _i	0 Ω to 0,02 Ω						
<i>t</i> 7	15 ms to 40 ms ^a 50 ms to 100 ms ^a						
t ₈	≼ 50 ms						
t ₉	0,5 s to 20 s ^a						
t ₁₀	5 ms 10 ms						
t ₁₁	t ₁₁ 5 ms to 100 ms ^b 10 ms to 100 ms ^c						
^a The value used should be agreed between the vehicle manufacturer and the equipment supplier to suit the proposed application.							
case when the engin	$t_{11} = 5$ ms is typical of the case when engine starts at the end of the cranking period, while $t_{11} = 100$ ms is typical of the case when the engine does not start.						

Table 8 — Parameters for test pulse 4

 $t_{11} = 10$ ms is typical of the case when engine starts at the end of the cranking period, while $t_{11} = 100$ ms is typical of the case when the engine does not start.

Report No.: SZEMO081005325TXE Page: 18 of 28

Test Results:

Test Pulse Number	Immunity Test Level (min. voltage)	Performance Criterion required	Performance under test
1	III (-75)	С	А
2a	III (+37)	В	A
2b	III (+10)	С	А
3a/3b	III (-112/+75)	А	A
4	III (-6)	С	A

Remark:

A: No Loss of Function

Conclusion:

The EUT can meet the requirements of the standard.

6.3.2 Radiated ImmunityTest

Test requirement: Clause 6.7 of 2004/104/EC

There is no immunity related function in the EUT, radiated Immunity test was not applicable according to 8.6 of 2004/104/EC.

Report No.: SZEMO081005325TXE Page: 19 of 28

7 Test Results (EMC directive)

7.1 Radiated Emissions, 30MHz to 1GHz

Test Requirement:	EN 61000-6-3
Test Method:	CISPR 16-2-3
Frequency Range:	30MHz to 1GHz
Measurement Distance:	3m
Class:	Class B
Detector:	Peak for pre-scan (120kHz resolution bandwidth)
	Quasi-Peak if maximised peak within 6dB of limit

E.U.T. Operation

Operating Environment:

Temperature:24.0 °CHumidity:52 % RHAtmospheric Pressure:1010 mbarEUT Operation:Test in on mode. keep EUT working with full load

Plan View of Test Setup

Measurement Data

An initial pre-scan was performed in the 3m chamber using the spectrum analyser in peak detection mode. Quasi-peak measurements were conducted based on the peak sweep graph. The EUT was measured by Bilog antenna with 2 orthogonal polarities.

The following quasi-peak measurements were performed on the EUT.

Report No.: SZEMO081005325TXE Page: 20 of 28

Vertical:

Job No. : 5324TX Mode · On

LATO dC	. 011								
			CableA	Antenna	Preamp	Read		Limit	Over
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit
							1 (1 (
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
-1		42 500	0 60		00 10	44 00	07 50	40 00	10 50
T		43.580	U.68	9.92	28.10	44.99	27.50	40.00	-12.50
2		62.980	0.80	7.11	28.03	39.41	19.28	40.00	-20.72
3		87.230	1.10	8.45	27.96	36.98	18.57	40.00	-21.43
4		98.870	1.19	9.06	27.89	41.20	23.56	40.00	-16.44
5		132.820	1.28	7.82	27.58	33.57	15.09	40.00	-24.91
6		222.060	1.53	11.34	27.04	35.70	21.52	40.00	-18.48

Report No.: SZEMO081005325TXE Page: 21 of 28

Condition	: CISPR 22 (CLASS B	3m 0042673 HOR	IZONTAL
EUT	: Universal I	DC Adapt	er	
Job No.	: 5324TX	-		
Mode	: On			
			CableAntenna	Preamp
		-		-

		Freq	Cable Loss	Antenna Factor	Preamp Factor	Read Level	Level	Limit Line	Over Limit
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1		43.580	0.68	10.52	28.10	42.37	25.47	40.00	-14.53
2		62.980	0.80	7.11	28.03	39.30	19.17	40.00	-20.83
3		98.870	1.19	9.06	27.89	37.35	19.72	40.00	-20.28
4		128.940	1.27	7.72	27.61	36.73	18.11	40.00	-21.89
5	0	222.060	1.53	11.34	27.04	43.15	28.98	40.00	-11.02
6		341.370	2.03	15.22	27.03	36.73	26.95	47.00	-20.05

This document is issued by the Company under its General Conditions of Service printed overleaf or available on request and accessible at<u>http://www.sgs.com/terms and conditions.htm.</u> Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law." Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This document cannot be reproduced exept in full, without prior approval of the Company.

Horizontal:

Report No.: SZEMO081005325TXE Page: 22 of 28

7.2 ESD

Test Requirement:	EN 61000-6-1			
Test Method:	EN 61000-4-2			
Criterion Required:	В			
Discharge Impedance:	330 Ω / 150 pF			
Discharge Voltage:	Air Discharge:	2, 4, 8 kV		
	Contact Discharge:	2, 4 kV		
	VCP / HCP:	2, 4 kV		
Polarity:	Positive & Negative			
Number of Discharge:	Minimum 10 times at each test	point		
Discharge Mode:	Single Discharge			
Discharge Period:	1 second minimum			

7.2.1 E.U.T. Operation

Operating Environ	ment:					
Temperature:	25.0 °C	Humidity:	48 % RH	Atmospheric Pressure:	1010	mbar
EUT Operation:	Test in on mo	de. keep EU	T working with full	load		

7.2.2 Test Results

Direct Application Test Results

Observations: Test Point:

1. All insulated enclosure & seams.

2. All accessible metal parts of the enclosure.

Direct	Application	Test Results		
Discharge Level (kV)	Polarity (+/-)	Test Point	Contact Discharge	Air Discharge
2, 4, 8	+/-	1	N/A	А
2, 4	+/-	2	A	N/A

Indirect Application Test Results

Observations:

Test Point: 1. All sides.

Indirect	Application	Test	Results	
Discharge Level (Kv) Polarity (+/-) Test Point			Horizontal Coupling	Vertical Coupling
2, 4	+/-	1	А	А

Results:

A: No degradation in the performance of the EUT was observed.

N/A: Not applicable (not requested by Standard).

This document is issued by the Company under its General Conditions of Service printed overleaf or available on request and accessible at http://www.sgs.com/terms and conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law." Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This document cannot be reproduced except in full, without prior approval of the Company.

Report No.: SZEMO081005325TXE Page: 23 of 28

7.3 Radiated Immunity 80MHz to 1000MHz

Test Requirement:	EN 61000-6-1
Test Method:	EN 61000-4-3
Criterion Required:	A
Frequency Range:	80MHz to 2.7GHz
Modulation:	80%, 1kHz Amplitude Modulation

7.3.1 E.U.T. Operation

Operating Environment:

Temperature:23.0 °CHumidity:56 % RHAtmospheric Pressure:1010mbarEUT Operation:Test in on mode. keep EUT working with full load

7.3.2 Test Results:

Frequency	Level	Modulation	EUT Face	Result / Observations
		1kHz.	Front/back	А
80MHz-1GHz	3V/m	80% Amp. Mod,	Right/left	А
		1% increment	Top/underside	A
1.4GHz-2GHz	3V/m	1kHz	Front/back	A
		80% Amp. Mod, 1% increment	Right/left	А
			Top/underside	A
		1kHz	Front/back	A
2GHz-2.7GHz	1V/m	80% Amp. Mod,	Right/left	A
		1% increment	Top/underside	А

Remarks:

A: No degradation in the performance of the E.U.T. was observed.

Report No.: SZEMO081005325TXE Page: 24 of 28

8 Photographs

8.1 Radiated Emission Test Setup

8.2 ESD Test Setup

Report No.: SZEMO081005325TXE Page: 25 of 28

8.3 Radiated Immunity Test Setup

Report No.: SZEMO081005325TXE Page: 26 of 28

8.4 Transient Immunity Test

8.5 EUT Constructional Details

Report No.: SZEMO081005325TXE Page: 27 of 28

Report No.: SZEMO081005325TXE Page: 28 of 28

